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1. INTRODUCTION

Throughout this paper we deal with approximation in the uniform norm of
elements of the space C(X) of all continuous real-valued functions on a
compact hausdorff topological space X by elements of a finite-dimensional
subspace G of C(X). For fE C(X) we call

d(f) = inf{llf- gil: g E Gl

the distance off from G and

P(f) = {g E G: Ilf- gil = d(f)l

the set of best approximations off in G. The set-valued mapping P which
maps an fE C(X) onto the non-empty compact convex subset P(f) of C(X)
is called the metric projection of C(X) onto G.

In recent years, there has been considerable interest in continuous
mappings S: C(X) ---> C(X) with the property that SfE P(f) for every
fE C(X). Such an S is called a continuous selection for the metric projection
P.

To date, the available results on continuous selections for metric
projections in C(X) deal primarily with their existence. In particular, Lazar
et al. [6] identified, for arbitrary X, the I-dimensional subspaces G of C(X)
for which P admits a continuous selection, and, in the case that X is an
interval, Niimberger and Sommer in a series of papers (see [9] and the
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references therein) characterized all (finite-dimensional) subspaces G of C(X)
for which P admits a continuous selection.

The purpose of this paper is to address the all but neglected question of
the uniqueness of continuous selections. The main result of the paper is
contained in Section 2, where, given that P admits at least one continuous
selection, we compute for every f E C(X) the set

U {Sf: S a continuous selection for Pl. (1)

This reduces the uniqueness question to the question of whether or not these
sets are singletons for every fE C(X).

As applications of our result, in Sections 3 and 4 we settle the uniqueness
question for arbitrary X if G is I-dimensional and for arbitrary (finite
dimensional) G if X is an interval, respectively. We conclude the paper with
several remarks.

2. THE MAIN RESULT

Our approach to constructing the sets (I) will be based on two facts. The
first is the following consequence of well-known results of Michael [7]:

Suppose P admits a continuous selection and define a mapping
Q by Q(f) = U{Sf: S a continuous selection for P} for
fE C(X). Then Q is a lower semi-continuous mapping of C(X)
into the set of non-empty closed convex subsets of C(X) and
Q(f) c P(f) for every fE C(X). Moreover, Q is the largest
such mapping in the sense that every lower semi-continuous
mapping R of C(X) into the set of non-empty closed convex
subsets of C(X) which has the property that R(f) c P(f) for
every fE C(X) also has the property that R(f c Q(f) for
every fE C(X). (2)

In order to state the second fact, we require some additional notation. Given
a function f E C(X) and a non-empty convex subset H of P(f), we define the
set of (common) extreme points off- H to be the set

E(f - H) = {x E X: If(x) - g(x)1 = d(f) for all g E H}.

It is well known (see, e.g., [2]) that these sets are always non-empty and that
all elements of H coincide on E(f- H). It follows that if fE G, the set
E(f- H) is the disjoint union of the sets

E+ (f- H) = {x E X:f(x) - g(x) = d(f) for all g E H}



and
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E- (f - H) = {x E x:f(x) - g(x) = -d(1) for all g E H}.
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The second fact we want to state is the following unpublished theorem of
Blatter (see [1]):

For fE C(X), P is lower semi-continuous atfiff there exists a
neighborhood of E(f - P(f)) in which all elements of P(I)
coincide. (3)

With these two facts at hand, we can present the main idea of this paper: (A)
by (2), the sets (1) can be alternatively described as maximal nonempty
closed convex subsets of the sets P(f) subject to lower semi-continuous
dependence on f; (B) the construction of sets meeting this description is
suggested by the pointwise criterion for lower semi-continuous dependence
on f of the sets P(f) themselves which is given in (3). We proceed to carry
out this idea.

DEFINITION. Suppose S* is a continuous selection for P. Then we define
the lower semi-continuous kernel P* of P induced by S* as follows: Fix
fE C(X). Set H o = P(I) and, for k = 1,2,... ,

H k = I g E H k _ l : g coincides with S*fin some neighborhood

of E(f - H k _ I )}·

It is easily verified that

the sets H k are all convex and

P(I) = Ho~ HI ~ H 2 ~ ... ~ {S*j}, (4)

for each k = 1,2,..., there exists a neighborhood of
E(f- Hk - l ) in which all elements of Hk coincide with S*f, (5)

for each k = 1,2,... , if H k is a proper subset of H k - 1 , then
dim(Hk ) <dim(Hk _ 1). (6)

It then follows that the sequence H0' HI' H 2"" is stationary from some
point on. Let k ~ 1 be the smallest integer for which H k = H k _ I' and set
P*(f)=Hk - l • It is clear from the properties of the sets Hk that P*(f) is a
closed convex subset of P(f) which contains S *f, and that there exists a
neighborhood of E(f- P*(f)) in which all elements of P*(f) coincide with
S*f

We now establish three lemmas, the last of which will be the key for our
\ proof of the main result of this paper; the first two are modifications of

lemmas in [2] and serve here only to prove the last.
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LEMMA 1. Let H be a subset of G, let E be a non-empty subset of X and
let go, hoE H have the property that for every neighborhood U of E

for some x E U. (7)

Then there exist r >0 and h E H such that if g E Hand

then

{x E X: g(x) ~ hex)} is a neighborhood ofE, (8)

The companion result with the inequality signs in both (7) and (8) reversed is
also true.

Proof We consider first the case go = O. Assume that the statement of
the lemma is false in this case. Suppose for a moment that we have
constructed numbers r0' r 1 , ... > 0 and functions hI' h2 , ... E H such that, for
k= 1,2,..., if

gEHflspan{ho,... ,hk_d and {xEX:g(x)~hk_l(X)} (9)

is a neighborhood of E, then II gil ~ r k _ l ,

{x E X: hk(x) ~ hk_1(X)}

Ilhkll < r k _ l •

is a neighborhood of E, (10)

(11 )

Then, obviously, hk E span{ho,'''' hk-d for k = 1,2,... and this contradicts
the fact that H is contained in the finite-dimensional subspace G of C(X).

We now construct, inductively, the numbers ro, rl'''' and the functions
hl'h2 ,.... Suppose that for some aoEIR, {xEX:aoho(x)~ho(x)} is a
neighborhood of E. Then, since by hypothesis ho assumes a positive value in
this neighborhood of E, aoho(x) ~ ho(x) > 0 for some x E X. It follows that
ao~ 1 and this implies that II aohoII ~ II hoII. Set r0 = II hoII. Then (9) holds for
k = 1 and, by the assumption that the lemma is false with r = r0 and h = ho'
there exists hI EH such that (10) and (11) hold for k= 1.

Now suppose that, for some integer n ~ 1, r0'"'' rn _ I > 0 and h1''''' hn E H
have been constructed such that (9)-( 11) hold for k = 1,..., n. If, for some
ao"'" an E IR, {x E X: aoho(x) + ... + anhnCx) ~ hn(x)} is a neighborhood of
E, then, since by hypothesis ho assumes a positive value in the intersection of
this neighborhood of E with the neighborhood {x E X: hn(x) ~ ... ~ hi (x) ~
ho(x)} of E, aoho(x) + ... + anhn(x) ~ hn(x) ~ ... ~ h1(x) ~ ho(x) > 0 for
some xEX. For this x, (iaol+"'+lani)hn(x)~laolhoCx)+,,,+

lanl hn(x) ~ aoho(x) + ... + anhn(x) ~ hn(x) > 0 and this implies that
IaoI+ ... + Ian I~ 1. Since all norms on the (n + 1)-dimensional subspace
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spanlho'"'' hn } of G are equivalent, there exists r n > 0 such that (9) holds for
k = n + 1. By the assumption that the lemma is false with r = rn and h = h n ,

there exists hn+tEH such that (10) and (11) hold for k=n+ 1. This
establishes the lemma in case go = O.

For general go' the lemma follows from the special case applied to
H - go' E and 0, ho- go E H - go' The result with reversed inequalities
follows from the original version applied to -H, E and -ho' -go E -H. The
proof is complete. I

LEMMA 2. Let fE C(X) "" G, let hE P(f) and let V be a neighborhood
of E(f- P(f». Set H = Ig E P(f): g coincides with h in V}. Then for every
c > 0, there exists an fe E C(X) with the properties

life - fll ~ c,

d(fe) = d(f) and He P(fe) c P(f),

if h E He Hand H is convex, then

E +(f- H) c E + (fe - H) c E +(f- H) U V

and

(12)

(13 )

E-(f - H) cE-(f-H) cE-(f- H) U V, (14)

if g E P(fe), then Ix E X: g(x) ~ hex)} is a neighborhood of
E +(f- P(f» and Ix E X: g(x ~ h(x)} is a neighborhood of
E- (f- P(f». (15)

Proof We consider first the case h = O. Suppose that 0 < e <d(f). Since
oE P(f),

E+(f - P(f» = Ix E X:f(x) = d(f) and g(x) = 0

for all g E P(f)},

E-(f - P(f» = Ix E X:f(x) = -d(f) and g(x) = 0

forallgEP(f)}, (16)

and hence there exist disjoint open neighborhoods V+ ~ V and V- ~ V of
E +(f- P(f» and E - (f- P(f», respectively, such that

f(x) ~ d(f) - e

f(x) = -d(f) + e

for all x E v+ ,
for all x E U- (17)

and (note that P(f) is a compact subset of C(X»

I g(x)1 ~ d(f) - e for all g E P(f) and all x E U+ U U-. (18)
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Let V+ c U+ and V- c U- be closed neighborhoods of E +(f - P(f)) and
E - (f - P(f)), respectively, and define two functions ~, 'II: X --+ IR as

~(x) = d(f) if xE V+,

= -d(f) if xE U~,

=f(x) otherwise,

'II(x) = d(f) if xE U+,

= -d(f) if xE V~,

=f(x) otherwise. (19)

It is easily verified that ~ is upper semi-continuous, 'II is lower semi
continuous and that ~(x) ~ 'II(x) for all x E X. By the classical Tong
Katetov Interposition Theorem (see, e.g., [4]), there exists anfeE C(X) such
that

~(x) ~fe(x) ~ 'II(x) for all x E X, (20)

and we claim that this fe has all the desired properties. By (19) and (20) we
have

f.(x) =f(x) for x EX", (U+ U U-),

fix) = d(f) for x E V+

and

fe(x) = -d(f) for x E V-,

f(x) ~fe(x) ~ d(f) for x E U+ '" V+

and

-d(f) ~flx) ~f(x) for x E U- '" V-. (21 )

By (17) and (21), Ilfe-fll~6, i.e.,fe satisfies (12). By (21) (note that
d(f)=llfll), Ilfell=llfll, and by (16) and (21) (note that
E+(f-P(f))cV+ and E-(f-P(f))cV-), flx)=f(x) for all xE
E(f- P(f)). These two facts imply (see, e.g., [2]) that d(fe) = d(f), and this
together with (21) implies (note that U+ U U- c U) that He P(fe)' To
prove that also P(fe) c P(f) is a little cumbersome. Let g E P(f.). Since
oE P(fe) and P(fe) is convex, ag E P(fe) for all 0 ~ a ~ 1, and therefore, by
(17) and (21),
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If(x) - ag(x)1 = l!e(x) - ag(x)1 ~ d(fe)

forallxEX~(U+UU-), O~a~ 1,

f(x) - ag(x) ~!e(x) - ag(x) ~ d(fe)

for all x E U+, 0 ~ a ~ 1,

f(x) - ag(x) >!e(x) - ag(x) >-d(fe)

for all x E U-, 0 ~ a ~ 1.
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(22)

Since II gil ~ life - gil + Ilfell = 211fell, by (17),

f(x) - 4g(x) >d(f) - e - d(fe)

and
f(x) - 4g(x) ~ -d(f) + e + d(fe)

for all x E U+,

for all x E U-,

. and these two inequalities combined with the inequalities (22) for a = 4show
(note that d(!e) = d(f)) that 4g E P(f). Then, however, by (18), Ig(x)1 ~
2(d(f) - e) for all x E U+ U U- and therefore, again by (17),

f(x) - g(x) >d(f) - e - 2(d(f) - e) = -d(f) + e

and

f(x) - g(x) ~ -d(f) + e + 2(d(f) - e) = d(f) - e

for all x E U+ ,

for all x E U-.

These two inequalities combined with the inequalities (22) for a = 1 show
that g E P(f). Thus P(fe) c P(f), and this completes the proof that fe
satisfies (13). Let H be a convex subset of H which contains O. Since 0 E H,

E+ (f- H) = {x E X:f(x) = d(f) and g(x) = 0 for all g E HI,

E- (f- H) = {x E X:f(x) = -d(f) and g(x) = 0 for all g E HI

and (note that He P(!e) and d(fe) = d(f))

E+(!e - H) = {x E X:fe(x) = d(f) and g(x) = 0 for all g E HI,

E- (!e - H) = {x E X:fe(x) = -d(f) and g(x) = 0 for all g E HI.

Now by (21), if x E X and If(x)1 = d(f), then fix) =f(x). Thus
E+(f-H)cE+(fe-H), and E-(f-H)cE-(fe-H). Again by (21)
(note that U+ U U- c U), if x E X, Ife(x)1 = d(f) and f(x) *fix),
then xE U. Thus E+Ue-H)cE+U-H)U U and E-Ue-H)c
E - (f- H) U U. Thus fe satisfies (14). Once more by (21), if g E PUe), then
g(x) >0 for all x E V+ and g(x) ~ 0 for all x E V-. Thus (note that V+ is a
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neighborhood of E +(f - P(f» and V- is a neighborhood of E - (f - P(f»),
h satisfies (15) and we are done with the case h = O.

The general case of the lemma follows from the special case applied to
f - h, 0 E P(f- h) and U (note that d(f - h) = d(f) and therefore
P(f- h) = P(!) - hand E ± ((f- h) - P(f - h» = E ± (f - P(!). The proof
is complete. I

LEMMA 3. Let S* be a continuous selection for P, let p* be the lower
semi-continuous kernel of P induced by S*, and let fE C(X) be such that
P*(f) *- P(f). Then for every e >0 there exists an fe E C(X) such that
Ilh - fll ~ e and P(h) = P*(f).

Proof Let P(!) = H 0 =:J HI =:J ••• =:J {S*f} be as in the Definition, and,
for k = I, 2,... , set

Uk = interior of {x E X: g(x) = S*f(x) for all g E Hd.

Then, for each k = 1, 2,..., Uk is an open neighborhood of E(f - H k_ I)'
H k= {gE Hk_l:g coincides with S*fin Ud, and Ukc Uk+l' Suppose for a
moment that for each k = 1, 2,... and for every e >0 we have constructed a
functionfk.e E C(X) such that

Ilfk,e - fll ~ ke,

d(fk,e) = d(f) and P(fk,e) = H k,

if S*fE Ii c H k and Ii is convex, then

and

(23)

(24)

Let k ~ 1 be the smallest integer such that P*(f) = H k_ 1 (see the
Definition). Since P*(f) *- P(f) by hypothesis, we have that k ~ 2. By (23)
and (24) the functionsh =fk-l,e/(k-IP e > 0 have the required properties.

We now construct the functionsfk.e inductively. First we prove

if g E P(f) then {x E X: g(x) ~ S*f(x)} is a neighborhood
of E+(f-P(f» and {xEX:g(x)~S*f(x)} is a
neighborhood of E - (f - P(f». (26)

Assume that the first statement of (26) is false. Then E+ (f - P(f» is non
empty and there exists an ho E P(f) with the property that for every
neighborhood U of E+ (f - P(f», ho(x) > S*f(x) for some x E U, By
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Lemma 1 applied to P(f), E+(j - P(f)) and S*f, ho there exist r> 0 and
hE P(j) such that if g E P(j) and {x E X: g(x)? h(x)l is a neighborhood
of E+ (j - P(j)), then II g - S*fll ? r, and by Lemma 2 applied tof, h and X
(note that our hypothesis P*(j) =1= P(f) implies that fq; G), for every t: > 0
there exists an];,e E C(X) such that

then

Ilfl,e-fll;-(t:, P(~ ,e) C P(j) and if g E P(~ e)

{x E X: g(x) ~ h(x)l is a neighborhood of E +(j - P(j)).

It follows that fl,e ...... f as t: ...... 0 and that IIg - S *fll ~ r for every g E P(Jt,e)
and every t: > O. This contradicts the fact that S* is a continuous selection
for P. Thus the first statement of (26) is true. The same argument with
E - (j - P(j)) in the place of E +(j - P(j)) and the inequalities reversed,
where applicable, shows that the second statement of (26) is also true. Next
we observe that by Lemma 2 (applied to f, S *f and UI ), for every t: > 0 there
exists an f1 e E C(X) such that

Ilfl,e-fll;-(t:,

d(jl) = d(j) and Hie P(jl. e) C P(f),

if S*fEHcHI and H is convex, then E+(j-H)c
E+(jl e-H)cE+(j-H)U UI and E-(j-H)c
E-(jI:e-H)cE-(j-H)U Up and

if gEP(jI,e) then {x EX:g(x)?S*f(x)l is a
neighborhood of E+ (j - P(j)) and {x E X: g(x);-( S*f(x)l
is a neighborhood of E-(j-P(j)). (27)

Let t: > O. It follows from (26) and (27) that every g E P(jt) coincides with
S*fin some neighborhood of E(j- P(j)). Thus P(jt) c HI' Since by (27)
also HI C P(jl,e)' we have that P(jl,e) = HI and this together with (27)
shows that the functionfl,e satisfies (23)-(25) for k = 1.

Now suppose that for some integer n ~ 1 and for every t: > 0 we have
constructed a function fn .• E C(X) such that (23)-(25) hold for k = n. First
we prove

if g E Hn then {x E X: g(x);-( S*f(x)l is a neighborhood of
E+ (j - Hn ) and {x E X: g(x);-( S*f(x) I is a neighborhood
of E-(j-Hn ). (28)

Assume that the first statement of (28) is false. Then E+ (j - H n ) is non
empty and there exists an ho E H n with the property that for every
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neighborhood U of E+(f- Hn), ho(x) > S*f(x) for some x E U. By
Lemma 1 (applied to Hn, E+(f-Hn) and S*f,ho) there exist r>O and
hE H n such that

if gEHn and {xEX:g(x)~h(x)} is a neighborhood of
E+(f - Hn), then II g - S*fll ~ r,

and for every e > 0, by Lemma 2 applied to fn "' h and X (note that by (24)
for k = n,fn,e E G and h E P(fn,e»' there exists 'an1n+ I,e E C(X) such that

111,,+ I,e - fn,ell ~ e, p(1" +I,e) C P(fn,e) and if g E P(Jn+ I,e)
then {x E X: g(x) ~ h(x)} is a neighborhood of
E + (fn ,e - P(fn,e))·

It follows (note (23) for k = n) that Ill" +1,e - fll ~
111n+ I,e - fn,ell + Ilfn,e - fll ~ (n + 1) e for every e > 0 and (note that by (24)
and (25) for k = n, E+ (f - Hn) c E+ (fn,e - P(fn))) that II g - S*fll ~ r for
every g E P(Jn+ I,e) and for every e > O. This contradicts the fact that S* is a
continuous selection for P. Thus the first statement of (28) is true. The same
argument with E-(f-Hn) and E-(fn,e-P(fn,e» in the place of
E+(f-Hn) and E+(fn,e-P(fn,e)), respectively, and with the inequalities
reversed where applicable, shows that the second statement of (28) is also
true. Next we observe that for every e >0, by Lemma 2 (applied tofn,e' S*f
and Un+I and noting that by (24) and (25) for k = n, E(fn,e - P(fn)) C

E(f - Hn) U Un' and that Un+I is a neighborhood of E(f - Hn) U Un) there
exists anf,,+ I,e E C(X) such that

Ilfn+ I,e - fn,ell ~ e, (29)

d(fn+I,e) = d(fn,e) and Hn+1cP(fn+l,e)cP(fn,e), (30)

if S*fE He Hn+I and H is convex, then

+ - + - + -E (fn,e-H)cE (fn+I,e-H)cE (fn,e-H)UUn+1

and

E-(fn,e - H) c E-(fn+1,e - H) c E-(fn,e- H) U Un+.. (31)

if gEP(fn+I,e) then {xEX:g(x)~S*f(x)} is a
neighborhood of E+ (fn,e - P(fn,e» and {x E X: g(x) ~
S*f(x)} is a neighborhood of E-(fn,e-P(fn))' (32)

Let e > O. By (23) for k = nand (29), 111n+ I,e -III";;;; Ilf,,+ l,e - I",ell +
Ilfn,e-fll~(n+ l)e. Thusfn+I,e satisfies (23) for k=n+ 1. By (24) for
k = nand (29), d(fn+ I ,e) = d(fn,e) = d(f). Since by (24) for k = nand (30),
P(fn+ I,e) C P(fn) = Hn, and by (24) and (25) for k = n, E+ (f - Hn) c
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E+ (fn,e - P(fn,e» and E-(f- H n) c E-(fn,e - P(fn,e»' it follows from (28)
and (32) that every g E P(fn+ I,e) coincides with S*f in some neighborhood
of E(f- H n), This implies that P(fn+ I,e) C H n+I' Since by (30) also H n+Ie

P(fn+I,e)' we have that P(fn+I,e)=Hn+I, Thus fn+I,e satisfies (24) for
k = n + 1. Since Hn::J H n+I and Un C Un+I' it follows from (25) for k = n
and (31) that fn + I,e satisfies (25) for k = n + 1 and we are done. I

THEOREM. If S* is a continuous selection for P and if p* is the lower
semi-continuous kernel of P induced by S*, then for every fE C(X)

P*(f) = U {Sf: S a continuous selection for Pl·

Proof For every fE C(X), set

Q(f) = U {Sf: S a continuous selection for Pl·

We show first that Q(f) c P*(f) for every fE C(X). Let fE C(X). If
P*(f) = P(f), then Q(f) c P*(f) by the definition of Q. We suppose now
that P*(f) -=1= P(f). By Lemma 3 there exist fl'/2 ,... E C(X) such that fn -+ f
as n -+ 00 and P(fn) = P*(f) for all n. Consequently, for every continuous
selection S for P, Sfn -+ Sf as n -+ 00 and Sfn E P*(f) for all n, and
therefore, since P*(f) is closed, SfE P*(f). Thus Q(f) c P*(f) also in this
case.

It remains to show that P*(f) c Q(f) for every fE C(X). By the conse
quence of results of Michael stated in (2), it suffices to prove that p* is
lower semi-continuous. Let fE C(X), let g E P*(f), and let f1'f2 ,... E C(X)
be such that fn -+f as n -+ 00. We must prove that there exist gn E P*(fn)'
n = 1,2,... , such that gn -+ g as n -+ 00. If fE G, then obviously g = f, and it
is easily verified (and well known) that gn -+f as n -+ 00 no matter how the
gn are chosen in (P(fn) and hence in) P*(fn)' Suppose now thatfE G. Since
the relative interior of P*(f) is dense in P*(f), we may restrict attention to
the case that g belongs to the relative interior of P*(f). One easily verifies
that in this case E(f- P*(f) = E(f - g). Since U = {x E X: g(x) = S*f(x)}
is a neighborhood of E(f- P*(f», it follows that there exists 0 < € <d(f)
such that

If(x) - g(x)1 ~ d(f) - € for all x EX"" U.

Now, for n = 1,2,..., choose!.. E C(X) such that II!.. - fll ~ lin and P(jn) =
P*(fn) (if P*(fn) = P(fn) set In = fn and if P*(fn) -=1= P(fn) appeal to
Lemma 3) and set in = g + s*ln - S*f Then

IIn(x) - in(x)1 = IIn(x) - s*lnCx)1 ~ d(jn)

for all x E U and all n,
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Il,,(x) - gn(x)l:::;; Ih(x) - f(x)1 + If(x) - g(x)1 + Is*lnCx) - S*f(x)1

:::;; Ill" - fll + (d(f) - e) + Ils*ln - S*fll
for all x EX", U and all n.

Observing that In --+ f as n --+ 00 and therefore s*ln --+ s*1 and d(Jn) --+ d(f)
as n --+ 00, we infer from the last inequality that

for all x EX", U and all

sufficiently large n,

and combining this with the next-to-last inequality above shows that
gn E pel,,) for all sufficiently large n. Since pUn) = P*(fn) for all nand
gn --+ g as n --+ 00, we are done. I

It is an immediate consequence of our Theorem that p* is entirely
independent of the particular choice of S *. Thus, given that P admits a
continuous selection, we can speak of the lower semi-continuous kernel p*
ofP.

3. I-DIMENSIONAL SUBSPACES OF C(X)

For this section let G = span{ g} for some non-zero g E C(X), and set
Z = {x E X: g(x) = O}. Lazar et al. [6] showed that P admits a continuous
selection in precisely the following four mutually exclusive cases.

Case 1. Z is empty.

Case 2. The interior of Z is empty, the boundary of Z is a singleton and
one of {x E X: g(x) ~ O} and {x E X: g(x):::;; O} is a neighborhood of Z.

Case 3. Z is non-empty and open.

Case 4. The interior of Z is non-empty, the boundary of Z is a singleton
and one of {x E X: g(x) ~ O} and {x E X: g(x):::;; O} is a neighborhood of Z.

We show now that P possesses a unique continuous selection in precisely the
first two cases.

In the first case, G is a TchebychetT subspace of C(X) and therefore P(f)
is a singleton for every fE C(X). Thus P*(f) is a singleton for every
IE C(X).

In the second case, assume that for some IE C(X), gland g2 are distinct
elements of P*(f). Then the set {xEX:g 1(x)=g2(X)} on one hand is
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contained in Z and on the other hand is a neighborhood of E(f - P(f)) and
thus has non-empty interior, a contradiction. Thus P*(f) is a singleton for
every fE C(X).

In the third case, there exists an fE C(X) such that P(f) is not a
singleton. Then, since all elements of. P(f) coincide on E(f - P(f»,
E(f - P(f» is contained in Z. Since Z is open, it follows that P*(f) = P(f).
Thus P*(f) is not a singleton.

In the fourth case, there exists an fE C(X) of norm 1 which vanishes off
Z. One easily verifies that P(f) = {ag: Ia I ::;; I} and that Z is a neighborhood
of E(f- P(f)). It follows that P*(f) = P(f). Thus P*(f) is not a singleton.

We note that the function constructed in the fourth case could have been
constructed also in the third case. We chose not to do so because our
argument in the third case actually shows that P*(f) = P(f) for all
fE C(X); i.e., p* = P, while (see Remark 4) p* =1= P in the fourth case. We
treated the first two cases separately for the same reason.

4. FINITE-DIMENSIONAL SUBSPACES OF C(X), X AN INTERVAL

For this section, let X be a non-degenerate closed interval [a, bI of the real
line. Niirnberger and Sommer (see [9]) showed that the first of the following
two conditions implies the second.

Condition 1. G is a Weak-Tchebycheff subspace of C(X) and no non
zero element of G has more than dim(G) distinct zeros.

Condition 2. P possesses a unique continuous selection.

We show now that these two conditions are actually equivalent. Suppose P
admits a continuous selection but G does not satisfy the first condition. We
must prove that P possesses more than one continuous selection. By results
of Niirnberger and Sommer (see [9]) G is a Weak-Tchebycheff subspace of
C(X), some norm 1 function g in G vanishes on some non-degenerate subin
terval of X, and there exist an integer k ~ 1 and points a = Xo <X I < ... <
x k + 1= b such that, for 0::;; i::;; k, a function in G which vanishes on a non
degenerate subinterval of [x;,x;+II, vanishes on [X;,X;+I]' It follows that g
vanishes on [Xi' Xj+ I] for some 0 ::;;j::;; k. Now we distinguish two cases.

Suppose first that all functions in G vanish on [Xj' Xj+ I]' LetfE C(X) be
a norm 1 function which vanishes off [Xj' Xj+ 1]' Then lag: Ia I::;; I} c P(f)
and [Xj' Xj+ II is a neighborhood of E(f- P(f)). It follows that P*(f) =
P(f). Thus P*(f) is not a singleton. The example shown in Fig. 1 of a 1
dimensional subspace G of a full spline space is typical for this case (note
that this is Case 4 of Section 3).

640/36/2-5
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FIG. 1. P*(f) is not a singleton.

Suppose next that some function in G is non-zero somewhere in [xj ' Xj+ 11
and therefore throughout some non-degenerate subinterval [e, dl of
[xj ' xj+ II. Let fE C(X) be a norm 1 function which vanishes off [e, d] and
which alternates p times, i.e., there exist points e < to < t 1 < ... < tp < d such
thatf(t;) = (_l)i for 0 ~ i ~p, where p is sufficiently large. Then d(f) = 1,
and by well-known zero properties of Weak-Tchebycheff spaces (see, e.g.,
[8, Theorem 2.45]), all elements of P(f) vanish on [e, d]. Thus
{ag: Ia I~ I} c P(f) and [e, d] is a neighborhood of E(f - P(f)). It follows
that P*(f) = P(f). Thus P*(f) is not a singleton. The typical example for
this case is the space G = Ym(Ll) of polynomial splines of order m with
(simple) knots Ll = {x p ... , xd where k ~ m.

5. REMARKS

(1) The first application of our Theorem was made in [3], where we
showed that for spline approximation continuous selections are non-unique
whenever they exist. In (3] we also showed that for spline approximation the
lower semi-continuous kernel p* of P has an even nicer description than in
general and we gave examples illustrating the definition of the sets P*(f).

(2) Brown [5] proved that if G has the property that none of its non-zero
elements vanish on a non-empty open subset of X, then if there exists a
continuous selection for P it is unique. This is an immediate consequence of
our Theorem and the fact that for every fE C(X) any two elements of P*(f)
coincide in a neighborhood of E(f- P*(f)) (see our argument in Case 2 of
Section 3).

(3) As we mentioned at the beginning of Section 2, our construction of
the lower semi-continuous kernel p* of P was inspired by the unpublished
pointwise criterion for lower semi-continuity of P quoted in (3). It is not too
much of a surprise therefore, that in case P admits a continuous selection,
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this criterion follows immediately from our results on P*: Note first that
P*(f) = P(f) iff all elements of P(f) coincide in a neighborhood of
E(f - P(f». Now suppose that P is lower semi-continuous atf If g E P(f),
by Lemma 3 there existfn -4 f such that P(fn) = P*(!), and since P is lower
semi-continuous at f, there exist gn E P(fn) such that gn -4 g. Thus P*(f) =

PC!)· Conversely, suppose that P*(f) = P(f). If g E P(f) and fn -4f, then
since p* is lower semi-continuous, there exist gn E P*(fn) such that gn -4 g.
Thus P is lower semi-continuous at f

(4) In concluding this paper, we feel obliged to say a word or two about
the fact that the pointwise criterion for lower semi-continuity of P remained
unpublished. In [2], Blatter et al. proved that P is lower semi-continuous iff
for every fE C(X) such that 0 E P(!) the set Z(P(f» = {x E X: g(x) = 0 for
all g E P(f) I is open; and this global criterion for lower semi-continuity of P
is, of course, a modification of the pointwise criterion above. The
modification consists in passing, for fE C(X) such that 0 E P(f), from the
set E(f - P(f» to the larger-and often strictly larger-set Z(P(f». This
passage facilitates certain conclusions, e.g., that for connected X, P is lower
semi-continuous iff G is Tchebycheff, but results in a loss of information
without which the present paper would have been impossible.

REFERENCES

I. J. BLATTER, "Zur Stetigkeit von mengenwertigen metrischen Projektionen," I1M-Bericht
39/67, Univ. Bonn, 1967.

2. J. BLATTER, P. D. MORRIS, AND D. E. WULBERT, Continuity of the set-valued metric
projection. Math. Ann. 178 (1968), 12-24.

3. J. BLATTER AND L. SCHUM,o\.KER, Continuous selections and maximal alternators for spline
approximation, J. Approx. Theory, to appear.

4. J. BLATTER AND G. L. SEEVER, Interposition and lattice cones of functions. Trans. Amer.
Math. Soc. 222 (1967), 65-96.

5. A. L. BROWN, On continuous selections for metric projections in spaces of continuous
functions. J. Funct. Anal. 8 (1971), 431-449.

6. A. J. LAZAR, D. E. WULBERT, AND P. D. MORRIS, Continuous selections for metric
projections. J. Funct. Anal. 3 (1969), 193-216.

7. E. MICHAEL, Continuous selections, 1. Ann. Math. 63 (1956),361-382.
8. L. L. SCHUMAKER, "Spline Functions: Basic Theory," Wiley-Interscience, New York.

1981.
9. M. SOMMER, Characterization of continuous selections of the metric projection for a class

of weak Chebyshev spaces. SIAM J. Math. Anal. 13 (1982), 280--294.


